
1

B A S I C 4
By: Rick Nash

Published by: Loadstar, Issue #65, 1989

Presented by: www.My64.in.nf

PREFACE
--

There are several BASIC extension programs available, and in

my opinion, they all share a common problem. Once your program

is written, it will only work if the extension program is loaded

first. Worse, you can't SHARE your programs unless everyone owns

the same BASIC extension that you own. It was this shortcoming

that prompted me to write BASIC 4. What makes BASIC 4 different

is that it attaches itself to your BASIC program, thus

eliminating the problems mentioned above. Now you can use the

full power of BASIC 4 in all of your programs, and freely

distribute them to anyone. By the way, you won't find any

programmer helper (i.e. RENUMBER, AUTO etc.) routines in BASIC 4.

Every function and command is designed to help you write faster,

more efficient code. I am especially proud of the array handling

features. Now you can quickly search and sort string arrays,

insert and delete array elements, and instantly sum an entire

numeric array!

Several new commands allow greater control over your text

screens. The SCREEN command will let you save or load screens to

and from disk, or to and from several buffers located in RAM

under ROM. The COPY, MOVE and ERASE commands offer a new

dimension in screen manipulation.

I could go on raving about BASIC 4, but I think you should

turn the page and discover the power for yourself.

...Rick Nash

2

--
U S I N G B A S I C 4

--

A very important concept to grasp early on is how BASIC 4

uses memory, and how it attaches itself to your program. A

typical session will be as follows:

1. Load BASIC 4 with LOAD "BASIC 4",8 and type RUN. Once

you do, you're in the development mode.

2. You will see a title screen and copyright notice. At

this point you can write your code as usual, except that you have

access to all of the new features of BASIC 4.

3. When you are satisfied with your code, issue a normal

SAVE command to save your SOURCE code. This is more compact than

the CSAVE which saves BASIC 4 along with your program. You MIGHT

find it convenient to use the CSAVE option because then you can

just LOAD your program and RUN it and you've booted both your

program AND BASIC!

When you load A file that you've CSAVED and type list, you

will only see the BASIC 4 title screen. If you type RUN however,

your program will run. You'll have to break your program in

order to edit it.

Steps 1-3 can be repeated as many times as necessary so that

you can develop your code at different sittings (as normal BASIC

allows).

See appendix A for a memory map showing actual memory used

by BASIC 4.

3

--
U S E R G U I D E F O R M A T

--

Each new command is listed on a separate page, and includes

the following information:

1. The token for each command. Advanced programmers will

find this information useful.

2. The command type. Either Function or Statement.

3. The action. A general description of the command.

4. The syntax. This section shows the syntax for proper

operation. Note that parameters are enclosed in <> for clarity.

Do not type these characters in your program.

5) An example. A short demonstration of the command at

work.

4

List Of Commands

' (REM)...5
@ (PRINT AT).......................................5
ASC...6
BPEEK..7
BPOKE..8
CLS...9
COLOR..9
COPY..10
CSAVE... 11
CTRL..11
CVF.. 12
CVI.. 13
DEC.. 14
DEEK..15
DEFUSR...16
DELETE...17
DOKE..18
DUP.. 18
ELSE..19
ERASE... 20
EXEC..21
FILL..22
HEX$..23
HOME..24
IF...25
INLINE$...25

INSCR$...26
INSERT...27
INSTR... 28
KEY.. 29
MKF$..29
MKI$..30
MOD.. 31
MOVE..31
ON...32
PAUSE... 33
PDELAY...34
PROMPT...34
QUOT..35
RESTORE...36
RVS.. 37
SCRATCH...38
SCREEN...39
SCROFF...40
SCRON... 40
SEARCH...41
SORT..42
STRING$...43
SUM.. 44
VARPTR...45
XOR.. 46

5

' (REM)

Token:

$CF - 207

Type:

Statement.

Action:

Shorthand notation for REMark.

Syntax:

'

Example:

10 REM this is an old-fashioned remark.

20 'here is the new style!

30 'which do you prefer

40 program continues here

See Also:

REM (In your BASIC manual).

@ (PRINT AT)

Token:

$EF - 239

Type:

Statement.

Action:

Moves cursor to desired screen location. This function is

used with the PRINT command like the TAB or SPC commands. Screen

locations can be expressed as ROW,COL or as a screen location 0

to 999. Like TAB and SPC, more than one @ can be used in a

single print command. Multiple @'s in a single print command must

be separated by a comma or semicolon.

6

Syntax:

PRINT@<screen pos>,<variable-list>

PRINT@(<row>, <col>),<variable-list> screen

pos = 0-999

row = 0-24

col = 0-39

var-list = normal PRINT command parameters.

Example:

10 CLS 20 PRINT@0,"THIS IS AT LOCATION 0"

30 PRINT@(10,10),"THIS IS 10,10"

40 P=780

50 PRINT@P,"780",@P+40,"820"

See Also:

PRINT, TAB and SPC in your BASIC manual.

ASC

Token:

$F8 - 248

Type:

Function.

Action:

This function works exactly like the ASC in your BASIC

manual except that it fixes a bug in the original. This ASC will

return a 0 for a null character whereas the old version produced

an error message.

Syntax:

ASC(<string>)

string = ascii character

Example:

7

10 A$=""

20 A = ASC(A$)

30 PRINT "THE ASCII VALUE OF A$ IS:";A

See Also:

ASC in your BASIC manual.

BPEEK

Token:

$EE - 238

Type:

Function.

Action:

BPEEK (BANK PEEK) returns the value from RAM under any ROM

or I/O location. This area is located from $A000 to $FFFF.

BPEEK will also return the correct value from any other

location, but will be slower than the normal PEEK command. This

function will give you access to the normally unused RAM areas.

See BPOKE for the command to poke to these areas.

Syntax:

BPEEK(<memory location>)

memory location = 0-65535

Example:

10 CLS

20 M=DEC("E000")

30 PRINT@(8,0),"ENTER YOUR NAME:"

40 A$=INLINE$(8,17,12)

50 IFA$=""THEN 30

60 FORI=1TOLEN(A$)

70 BPOKEM+(I-1),ASC(MID$(A$,I,1)):NEXT

80 CLS:FORI=1TOLEN(A$)

90 PRINTCHR$(BPEEK(M+(I-1)));:NEXT

This program prompts you for your name, then pokes it into

the RAM under ROM at address $E000. It then fetches your name,

and displays it on the screen.

8

See Also:

BPOKE, PEEK and POKE.

BPOKE

Token:

$DC - 220

Type:

Statement.

Action:

The BPOKE command will poke a value to RAM under the ROM and

I/O area from $A000 to $FFFF. This command will also poke to

normal ram, but will be slower than the normal POKE.

Syntax:

BPOKE <address>,<value>

address = 0-65535

value = 0-255

Example:

10 CLS

20 M=DEC("E000")

30 PRINT@(8,0),"ENTER YOUR NAME:"

40 A$=INLINE$(8,17,12)

50 IFA$=""THEN 30

60 FORI=1TOLEN(A$)

70 BPOKEM+(I-1),ASC(MID$(A$,I,1)):NEXT

80 CLS:FORI=1TOLEN(A$)

90 PRINTCHR$(BPEEK(M+(I-1)));:NEXT

This program prompts you for your name, then pokes it into

the RAM under ROM at address $E000. It then fetches your name,

and displays it on the screen.

See Also:

BPEEK, POKE and PEEK.

9

CLS

Token:

$CE - 206

Type:

Statement.

Action:

The CLS command simply clears the screen. This is equivalent

to PRINT CHR$(147).

Syntax:

CLS

Example:

10 CLS

20 PRINT "NOTHIN' LIKE A CLEAN SCREEN!"

See Also:

HOME.

COLOR

Token:

$D7 - 215

Type:

Statement.

Action:

The COLOR command provides an easy way to control screen

border, background and character colors. Note that all three

colors must be specified.

Syntax:

COLOR <border>,<background>,<character>

border = 0-15

background = 0-15

10

character = 0-15

Example:

10 A=PEEK(53280):B=PEEK(53281):C=PEEK(646)

20 FORI=0TO15

30 FORJ=0TO15:CLS

40 FORK=0TO15

50 COLOR I,J,K

60 PRINT STRING$(40,"*");

70 NEXT:FORL=1TO50:NEXT

80 NEXT:NEXT

90 CLS:COLOR A,B,C

This program saves the current screen colors, then displays

all combination of screen and character colors. The screen is

then restored to the original colors.

See Also:

FILL

COPY

Token:

$D3 - 211

Type:

Statement.

Action:

The COPY command copies lines on the screen. Color memory is

moved along with the characters. The original line is unchanged.

Syntax:

COPY <row a> TO <row b>

row a = source row (0-24).

row b = destination row (0-24).

Example:

10 CLS

20 PRINT STRING$(40,42)

30 PRINT@40,"*",@79,"*"

40 FORI=2TO23:COPY1TOI:NEXT

11

50 COPY 0TO24

60 PRINT@(8,12),"A QUICK BORDER!"

70 FORI=1TO5000:NEXT

See Also:

MOVE, ERASE, RVS AND FILL

CSAVE

Token:

$E6 - 230

Type:

Statement.

Action:

The CSAVE command saves the runtime BASIC module along with

your source code. This combined package will LOAD and RUN like

any other BASIC program. It WILL NOT list however. For this

reason, YOU MUST save your "source file" while in the development

mode. Use the normal SAVE command to do this. Failure to do so

will result in the loss of your work. Read the manual for more

information.

Syntax:

CSAVE "<filename>",<device number>,<sa> filename = the combined

program filename sa = optional secondary address

Example:

CSAVE "THISFILE",8

This command will save the current combined program as

THISFILE to the disk drive number 8.

CTRL

Token:

$FC - 252

Type:

Function - system variable.

12

Action:

This function acts like a system variable (eg. TI$ ST etc.).

It returns the current status of the SHIFT, CONTROL and COMMODORE

keys. The values returned are as follows:

1 - shift key

2 - Commodore key

4 - control key If more than one key is

pressed, the value returned will be

the total of all keys pressed.

Syntax:

CTRL

Example:

10 CLS

20 PRINT"PRESS COMMODORE F1 TO CONTINUE..."

30 IF (CTRL AND 2)=0THEN30

40 IF KEY <>4 THEN 30

50 POKE198,0

This program waits for the user to press the Commodore and

F1 keys together before continuing the program.

See Also:

KEY

CVF

Token:

$F6 - 246

Type:

Function.

Action:

The CVF function converts a four byte string into a floating

point value. The string, must have been produced by the MKF$

function. Use these functions with care if you plan on using them

with disk files. Some numbers will convert to carriage returns

13

which will mess up your sequential file.

Syntax:

CVF(<string>)

string = 4 byte string produced by MKF$

Example:

10 CLS

20 A=56000.678

30 PRINT A:PRINT

40 A$=MKF$(A)

50 FORI=1TO4:PRINTASC(MID$(A$,I,1)):NEXT

60 PRINT:PRINTCVF(A$)

This program converts a floating point value in a, into a

four byte string. It then shows the contents of the string, and

then converts the string back into a float again.

See Also:

CVI, MKI$ and MKF$

CVI

Token:

$F5 - 245

Type:

Function.

Action:

Converts a two byte string into an integer. The string must

have been previously converted via the MKI$ function. See CVF for

warnings on using the conversion commands in disk files.

Syntax:

CVI(<string>)

Example:

14

10 CLS

20 PRINT "ORIGINAL",@16,+"CONVERTED"

30 FORI=0TO10:READ D

40 PRINT@(I+2,0),D:A$(I)=MKI$(D):NEXT

50 FORI=0TO10

60 PRINT@(I+2,18),CVI(A$(I)):NEXT

70 DATA -50,2000,28765,-3897,1024,14

80 DATA -4,32438,1798,290,2368

See Also:

CVF, MKI$ and MKF$

DEC

Token:

$FD - 253

Type:

Function.

Action:

Converts a hexadecimal ASCII string into a floating point

value. The upper limit is approximately 2FFFFFFF. Larger numbers

may work, but will be returned as scientific notation. If non-hex

characters are included in the string, DEC will return the total

until the first non-hex character. For example, DEC("FAXYZ") will

return 250 ($FA = 250).

Syntax:

DEC(<string>)

string = valid hex ASCII characters (0-9, A-F)

Example:

10 CLS

20 A=DEC("E473")

30 P=PEEK(A):A=A+1

40 IFP=0 THEN END

50 PRINTCHR$(P);:GOTO 30

15

See Also:

HEX$

DEEK

Token:

$E8 - 232

Type:

Function.

Action:

DEEK (Double PEEK) is a 16 bit version of PEEK. It returns

the 16 bit value at address and address +1. DEEK is most useful

for reading system vectors. Using DEEK is the same as:

PEEK(<address>)+PEEK(<address+1>)*256

Syntax:

DEEK(<address>)

address = 0-65534

Example:

10 CLS

20 A=DEC("0314")

30 READ D$:IFD$="END" THEN END

40 PRINT D$,TAB(10)RIGHT$(HEX$(DEEK(A)),4)

50 A=A+2:GOTO 30

60 DATA IRQ,BRK,NMI,OPEN,CLOSE,CHKIN

70 DATA CKOUT,CLRCH,CHRIN,CHROUT,STOP

80 DATA GETIN,CLALL,USER,LOAD,SAVE

90 DATA END

This program uses DEEK to print the low memory vectors in

the Commodore 64.

See Also:

DOKE, PEEK, POKE, BPEEK and BPOKE.

16

DEFUSR

Token:

$D8 - 216

Type:

Statement.

Action:

The DEFUSR command sets up the USR vector at address

785-786. It is equivalent to: DOKE 785,<address>

Syntax:

DEFUSR(<address>)

address = address of machine language routine.

Example:

10 CLS

20 FORI=49152TO49155

30 READ D:POKEI,D:NEXT

40 DEFUSR(49152)

50 PRINT "50 TIMES 10 IS"USR(50)

60 END

70 DATA 32,226,186 :'JSR $BAE2 ;FAC1=FAC1*10

80 DATA 96 :'RTS ;RETURN TO BASIC

This program sets up a small ML program that simply

multiplies the number passed to it by 10. The result is returned

to the BASIC program. See USR in your BASIC guide for more

information.

See Also:

USR (in your basic guide).

17

DELETE

Token:

$E1 - 225

Type:

Statement.

Action:

The DELETE command physically removes an element from an

array. All array types are supported. However, only

singly-dimensioned arrays may be used in the DELETE command.

After the element is deleted, the array is shifted downward from

the top of the array to the deleted element. The last element is

then cleared.

Syntax:

DELETE (array(element))

array = string, integer or float element = element of

the array to delete

Example:

10 CLS:DIMA$(5)

20 PRINT " BEFORE"TAB(10)"AFTER":PRINT

30 FORI=0TO5:READA$(I)

40 PRINT I,A$(I):NEXT

50 DELETE(A$(3))

60 FORI=0TO5

70 PRINT@(I+2,9),I;A$(I):NEXT

80 PRINT:PRINT"NOTE THAT ELEMENT 3 HAS BEEN

DELETED.

90 DATA CAT,DOG,TREE,APPLE,FARM,BIRD

At line 50 we specified that element 3 of array A$() was to

be deleted. Note also that the last element (5 in this case) has

been cleared.

See Also: DUP, INSERT, SCRATCH, SEARCH, SORT and SUM.

18

DOKE

Token:

$D0 - 208

Type:

Statement.

Action:

Pokes a 16 bit value to an address and address+1 in the

standard 6502 notation (low byte, high byte). It is useful for

installing vectors.

Syntax:

DOKE <address>,<value>

address = 0-65534

value = 0-65535

Example:

10 CLS

20 DOKE 828,49152

30 PRINT DEEK(828)

This example places the 16 bit value 49152 at 828 and 829.

DEEK then reads and displays the 16 bit value.

See Also:

DEEK, POKE, PEEK, BPOKE and BPEEK.

DUP

Token:

$E2 - 226

Type:

Statement.

Action:

DUP is used to fill (DUPlicate) an entire array with the

19

same value. Any type of array with any amount of dimensions can

be duplicated. Set the first element in the array to the value

that you want to duplicate, then use DUP to copy it to all other

elements in the array. Since string arrays are pointers to the

actual text, only one string is produced, and the entire array

points to it.

Syntax:

DUP(<array name>(0[,0]) array name = string, integer or float

array specify element 0 (all elements should be 0 if multiply

dimensioned)

Example:

10 DIM A$(20)

20 DIM A%(3,3)

30 DIMA(2,2,2)

40 A$(0)="HELLO":DUP(A$(0))

50 A%(0,0)=-22:DUP(A%(0,0))

60 A(0,0,0)=176.93:DUP(A(0,0,0))

70 CLS:FORI=0TO20:PRINTA$(I):NEXT

80 GOSUB160

90 CLS:FORI=0TO3:FORJ=0TO3

100 PRINTA%(I,J),:NEXT:NEXT

110 GOSUB160

120 CLS:FORI=0TO2:FORJ=0TO2:FORK=0TO2

130 PRINTA(I,J,K),:NEXT:NEXT:NEXT

140 GOSUB160

150 END

160 A=PROMPT(24,10,"PRESS F1 TO CONTINUE",

CHR$(133)):RETURN

See Also:

DELETE, INSERT, SCRATCH, SEARCH, SORT and SUM.

ELSE

Token:

$CD - 205

Type:

Statement.

Action:

20

Provides alternate action after an IF-THEN command in the

case that the IF test fails. A colon must precede the ELSE

command. Nested ELSE's are not supported.

Syntax:

IF <expression> THEN <statement> :ELSE <statement>

expression = test that evaluates to true or

false.

statement = a GOTO or line number, or other

legal BASIC command.

Example:

10 CLS

20 A=50

30 IF A=10 THEN 50:ELSE 60

40 END

50 PRINT"LINE 50":END

60 PRINT"LINE 60":END

Since the test will fail in line 30, the program will branch

to line 60.

ERASE

Token:

$D1 - 209

Type:

Statement.

Action:

The ERASE command erases a single, or range of lines on the

screen.

Syntax:

ERASE ERASE<row> ERASE<row a> TO <row b>

row = 0-24

row a = source row (0-24).

21

row b = destination row (0-24).

(The first syntax above will erase the line that the cursor is

on).

Example:

10 GOSUB90

20 PRINT@120,"";:ERASE

30 GOSUB110:GOSUB90

40 FORI=0TO24STEP2:ERASEI:NEXT

50 GOSUB110:GOSUB90

60 ERASE6TO18

70 GOSUB110:CLS

80 END

90 CLS:PRINTSTRING$(40,42)

100 FORI=1TO24:COPY0TOI:NEXT

110 FORI=1TO2000:NEXT:RETURN

This simple program demonstrates all three forms of the

ERASE command.

See Also:

COPY, MOVE, RVS and FILL

EXEC

Token:

$FE - 254

Type:

Function.

Action:

This function may seem strange at first, but I'm sure you'll

find some interesting uses for it. It will execute a string as if

it were a line of BASIC code! Since this is a function, the BASIC

code must return a value. Commands such as FOR-NEXT, GOTO, GOSUB

and IF-THEN will not work inside of an EXEC call. Functions

inside an EXEC call have access to variables in your program.

22

Syntax:

EXEC("<command>")

command = any normal command that returns

a value.

Example:

10 A$(0)="CHR$(A))

20 A$(1)="ASC(A$))

30 A=65

40 A$=EXEC(A$(0))

50 PRINT EXEC(A$(1))

The two strings in lines 10 and 20 are the commands that

will execute. Line 30 sets variable A to 65. Line 40 executes the

first string which converts the value in A into a string, and

assigns it to A$. Line 50 executes the second string which

converts the string value in A$ into an ASCII value which is then

displayed. Whew! I told you this was strange!

See Also:

(nothing else even comes close to this

one!)

FILL

Token:

$D6 - 214

Type:

Statement.

Action:

The FILL command fills color memory on the entire, or

partial screen, with a specified color.

Syntax:

FILL<color> FILL<color>,<row>,<col>,<# bytes>

color = 0-15

row = 0-24

col = 0-39

23

bytes = 1-40

Example:

10 LN=0:COLOR15,15,6:CLS

20 CH$=CHR$(145)+CHR$(17)+CHR$(13)

30 GOSUB150:FORI=0TO10

40 PRINT@(I+4,14),"CHOICE "+RIGHT$(" "

+MID$(STR$(I),2),2)

50 NEXT

60 FILL 1,LN+4,14,10

70 ON KEY CH$; GOTO 90,100,110

80 GOTO 70

90 D=-1:GOTO120

100 D=1:GOTO120

110 PRINT@(17,8),"YOU SELECTED ITEM ";LN:END

120 FILL 6,LN+4,14,10:LN=LN+D:IFLN<0THENLN=10

130 IF LN>10 THEN LN=0

140 FILL 1,LN+4,14,10:GOTO70

150 PRINT@(23,2),"USE UP AND DOWN ARROWS TO

CHOOSE":RVS23,0,40

160 PRINT@(24,5),"AND PRESS RETURN TO

SELECT";:RVS24,0,40:RETURN

See Also:

MOVE, ERASE, RVS and COPY

HEX$

Token:

$F2 - 242

Type:

Function.

Action:

The HEX$ function converts a floating point number to an

ASCII string. The string has leading zeros, so you can extract

the precision you need with the RIGHT$ command. The maximum

number allowed is 2147483647 (or $7FFFFFFF).

Syntax:

HEX$(<number>)

24

number = any whole number 0-2147483647

Example:

10 CLS

20 PRINT"DEC HEX":PRINT

30 FORI=0TO15

40 PRINTRIGHT$(" "+MID$(STR$(I),2),2);

50 PRINTTAB(6);RIGHT$(HEX$(I),2)

60 NEXT

See Also:

DEC.

HOME

Token:

$E5 - 229

Type:

Statement.

Action:

HOME places the cursor at row 0, col 0. It is the same as

PRINT CHR$(19).

Syntax:

HOME

Example:

10 HOME

20 PRINT"WELCOME HOME!"

This example prints a message at the HOME position.

See Also:

CLS and PRINT@.

25

IF

Token:

$CC - 204

Type:

Statement.

Action:

The IF command has been upgraded to allow the optional ELSE

command. It is included in this manual because the token number

has been changed. See ELSE for more information.

INLINE$

Token:

$FB - 251

Type:

Function.

Action:

The INLINE$ (INput LINE) function, works like the INPUT

command, except that you can specify the starting position, and

the maximum number of characters to accept. The only keys

accepted are the ASCII characters 32-95 inclusive, the delete

key, the return and stop keys.

Syntax:

INLINE$(<row>,<col>,<# bytes>)

row = 0-24

col = 0-39

bytes = 1-255

Example:

10 CLS

20 PRINT@(8,0),"ENTER YOUR NAME:"

30 A$=INLINE$(8,17,20)

40 CLS:N=(40-LEN(A$))/2

50 FORI=0TO6:PRINT@(I,N),A$;:NEXT

26

60 FORI=1TO1000:FILL MOD(I,16),MOD(I,7),0,40

70 NEXT

See Also:

INPUT.

INSCR$

Token:

$EC - 236

Type:

Function.

Action:

The INSCR$ (INput from SCReen) command reads data directly

from the screen, and places it in a string variable. The bytes

are converted from screen codes to ASCII codes during the

transfer.

Syntax:

INSCR(<row>,<col>,<# bytes>)

row = 0-24

col = 0-39

bytes = 1-40

Example:

10 DIMA$(23)

20 FORI=0TO23:A$(I)=INSCR$(I,0,40):NEXT

30 CLS:PAUSE20

40 FORI=0TO23:PRINTA$(I);:NEXT

50 PAUSE50

This program reads the screen (except the last line) into a

string array. The screen is erased, and after a short delay, the

screen is replaced. (See the SCREEN command for a better way to

deal with screen swapping).

27

INSERT

Token:

$E0 - 224

Type:

Statement.

Action:

INSERT is used to insert a blank element at the specified

subscript in an array. All singly dimensioned array types are

supported. All elements from the specified subscript to the top

of the array are moved up one position in the array. The top

element is lost, and the specified element is cleared. Note:

because the top element is always lost, make sure your array is

larger than it needs to be.

Syntax:

INSERT(<array>(<subscript>))

array = String, float or integer array

Example:

10 CLS:DIMA$(10)

20 DATA FLOPPY DISK, COMPUTER, PRINTER

30 DATA MODEM, SOFTWARE, BYTE

40 FORI=0TO5:READ A$(I):NEXT

50 PRINT"BEFORE";TAB(20);"AFTER"

60 FORI=0TO10

70 PRINT@(I+2,0),RIGHT$(" "+MID$(STR$(I),2),2);

80 PRINT" ";A$(I):NEXT

90 INSERT(A$(2)):A$(2)=" *CHECK IT OUT!"

100 INSERT(A$(4)):A$(4)=" *THIS IS NEW!"

110 FORI=0TO10

120 PRINT@(I+2,20),RIGHT$(" "+MID$(STR$(I),2),2); 130 PRINT"

";A$(I):NEXT

This inserts two new elements into an array and displays the

new array.

See Also:

DUP, DELETE, SCRATCH, SEARCH, SORT and SUM.

28

INSTR

Token:

$E7 - 231

Type:

Function.

Action:

The main string is searched to see if it contains the sub

string. If it does, the position is returned, otherwise a zero is

returned. An optional starting position can be specified. If it

is not, then the starting position is assumed to be the first

character of the main string.

Syntax:

INSTR([<pos>], <main string>, <sub string>)

pos = optional position to begin the search.

main string = the string to search.

sub string = the key to search for.

10 CLS

20 PRINT@(4,0),"PHONE:":Z$="(...) ...-...."

30 ROW=4:COL=7:LN=14

40 GOSUB 500:CLS:PRINT"YOU ENTERED "A$:END

500 FLAG=0:CT=0:P=0:PRINT@(ROW,COL),Z$

510 A=ASC(INSCR$(ROW,COL+P,1)):IF((P<LN)AND

(A<>46))THENP=P+1:GOTO510

520 CT=CT+1:IFCT=20THENFLAG=XOR(FLAG,1):CT=0:RVS

ROW,COL+P,1

530 GETA$:IFA$=""THEN520

540 IFINSTR("1234567890",A$)THEN 570

550 ONINSTR(CHR$(13)+CHR$(20),A$) GOTO 600,610

560 GOTO 520

570 IFP=LNTHEN 510

580 IFFLAG=1THENRVS ROW,COL+P,1

590 PRINT@(ROW,COL+P),A$;:P=P+1:GOTO510

600 A$=INSCR$(ROW,COL,LN):RETURN

610 PRINT@(ROW,COL+P)," ";:GOTO500

This example prompts the user to enter a phone number. It

uses INSTR to accept only the number keys, or <RETURN> and .

29

KEY

Token:

$F7 - 247

Type:

Function - system variable.

Action:

This function acts like a system variable (i.e. TI$, ST

etc.). It returns the scan code (not ASCII) of the current key

being pressed. This function is the same as PEEK(203). See

appendix B for a list of scan codes. The ON command has been

modified to recognize the KEY function. See ON for more

information.

Syntax: KEY

Example:

10 CLS

20 PRINT "PRESS COMMODORE F1 TO CONTINUE..."

30 IF (CTRL AND 2)=0THEN30

40 IF KEY <> 4 THEN 30

50 POKE198,0

See Also:

CTRL and ON.

MKF$

Token:

$F4 - 244

Type:

Function.

Action:

The MKF$ function converts a floating point value, into a 4

byte string. See CVF for warnings on using these strings in disk

files.

30

Syntax:

MKF$(<float>)

float = any floating point value.

Example:

10 CLS

20 A = 56000.678

30 PRINT A:PRINT

40 A$=MKF$(A)

50 FORI=1TO4:PRINTASC(MID$(A$,I,1)):NEXT

60 PRINT:PRINTCVF(A$)

See Also:

CVF, MKI$ and CVI.

MKI$

Token:

$F3 - 243

Type:

Function.

Action:

The MKI$ converts any integer into a two byte string. See

CVF for warnings on using these strings in disk files.

Syntax:

MKI$(<integer>)

Example:

10 CLS:DIMA$(10)

20 PRINT"ORIGINAL",@16,"CONVERTED"

30 FORI=0TO10:READ D

40 PRINT@(I+2,0),D:A$(I)=MKI$(D):NEXT

50 FORI=0TO10

60 PRINT@(I+2,18),CVI(A$(I)):NEXT

70 DATA -50,2000,28765,-3897,1024,14

80 DATA -4,32438,1798,290,2368

31

See Also:

MKF$, CVI and CVF.

MOD

Token:

$F1 - 241

Type:

Function.

Action:

The MOD function returns the remainder of an integer

division.

Syntax:

MOD(<integer a>, <integer b>)

integer a = dividend.

integer b = divisor.

Example:

10 CLS

20 PRINT "THE REMAINDER OF 10 / 4 IS" MOD(10,4)

See Also:

QUOT.

MOVE

Token:

$D4 - 212

Type:

Statement.

Action:

MOVE copies a screen row to another screen

32

row. It then clears the original row.

Syntax:

MOVE <row a> TO <row b>

row a = source row (0-24).

row b = destination row (o-24).

Example:

10 CLS

20 PRINT STRING$(40,"*");

30 PRINT "** MOVIN' RIGHT ALONG **";

40 PRINT STRING$(40,"*");:PAUSE10

50 FORI=0TO21:MOVEI+2TOI+3:MOVEI+1TOI+2:

MOVEITOI+1:NEXT

60 FORI=24TO3STEP-1:MOVEI-2TOI-3:MOVEI-1TO

I-2:MOVEITOI-1:NEXT

70 PRINT@(5,3),"HOW'S THAT FOR A MOVING MESSAGE"

This example prints a "moving message". Note that the string

in line 30 is 40 characters wide.

See Also:

COPY, ERASE, RVS and FILL.

ON

Token:

$DE - 222

Type:

Statement.

Action:

The ON command has been upgraded to work with the KEY

command. The ON command works as before, but now you can also

test for keystrokes. Please note the use of the semicolon in the

syntax.

Syntax:

33

ON KEY <string> ; GOSUB / GOTO <linenumber>[,<linenumber>]...

string = ASCII keys to match.

Example:

10 CLS:PRINT"PRESS A-D:"

20 ON KEY "ABCD";GOTO 100,200,300,400

30 GOTO 20

100 PRINT"YOU PRESSED A":END

200 PRINT"YOU PRESSED B":END

300 PRINT"YOU PRESSED C":END

400 PRINT"YOU PRESSED D":END

The example above waits for a key A-D (as specified in the

literal string). When one is pressed, a message indicates which

key it was. Note the semi- colon in line 20. You will get a

syntax error without it.

PAUSE

Token:

$D5 - 213

Type:

Statement.

Action:

The PAUSE command causes a delay. An optional number

specifies the duration (in 1/10 second increments). If no number

is given, then the delay will continue until a the <RETURN> key

is pressed. Note that the <STOP> key is scanned during the delay,

so you can abort long delays. The 1/10 figure is approximate.

Syntax:

PAUSE [<num>]

num = optional number of 1/10 seconds in the delay.

Example:

10 CLS

20 PRINT "A 10 SECOND DELAY..."

30 PAUSE120

34

40 PRINT "PAUSE UNTIL <RETURN> IS PRESSED..."

50 PAUSE

PDELAY

Token:

$D9 - 217

Type:

Statement.

Action:

The PDELAY command sets the blink rate for the PROMPT

command. If a PDELAY of 0 is specified, then the PROMPT command

will not blink.

Syntax:

PDELAY <num>

num = blink rate (0-255).

0 = no blink.

Example:

10 CLS

20 PDELAY 15

30 A=PROMPT(8,10,"CONTINUE (Y/N)","YN")

40 IF CHR$(A)="N"THEN30

See Also:

PROMPT.

PROMPT

Token:

$ED - 237

Type:

Function.

Action:

35

The PROMPT command will display a message at a specified

location on the screen. PROMPT then waits for a key press that

matches one of the characters in the validation string. Once a

valid key is pressed, its ASCII value is returned by the PROMPT

function.

Syntax:

PROMPT(<row>,<col>,<message>,<validation string>)

row = 0-24

col = 0-39

message = message to display

validation string = ASCII keys that are allowed, to cause

the program to resume.

Example:

10 CLS

20 PDELAY 15

30 A=PROMPT(8,10,"CONTINUE (Y/N)","YN")

40 IF CHR$(A)="N"THEN30

See Also:

PDELAY.

QUOT

Token:

$F0 - 240

Type:

Function.

Action:

The QUOT function returns the quotient from an integer

division. The MOD function can be used to return the remainder.

Syntax:

QUOT(<num a>, <num b>)

num a = dividend

num b = divisor

36

Example:

10 CLS

20 PRINT "100 DIVIDED BY 6 IS";QUOT(100,6)

30 PRINT

40 PRINT "WITH A REMAINDER OF";MOD(100,6)

See Also:

MOD.

RESTORE

Token:

$E4 - 228

Type:

Statement.

Action:

The RESTORE works like the normal BASIC version, except that

you can specify a line number to restore to. This feature allows

you to access DATA statements in any order that you wish.

Syntax:

RESTORE [<line number>]

line number = optional line to set DATA

pointer to.

Example:

10 DATA SPECIFY THE LINE

20 DATA DATA POINTER TO BE SET TO.

30 DATA NOW YOU CAN

40 DATA THAT YOU WANT THE

50 CLS

60 RESTORE30:READD$:PRINTD$

70 RESTORE10:READD$:PRINTD$

80 RESTORE40:READD$:PRINTD$

90 RESTORE20:READD$:PRINTD$

See Also:

DATA and RESTORE in your BASIC manual.

37

RVS

Token:

$D2 - 210

Type:

Statement.

Action:

The RVS command will invert the characters on a specified

area of the screen.

Syntax:

RVS <row>,<col>,<# chars>

row = 0-24

col = 0-39

chars = 1-40

Example:

10 LN=0:COLOR15,15,6:CLS

20 CH$=CHR$(145)+CHR$(17)+CHR$(13)

30 GOSUB150:FORI=0TO10

40 PRINT@(I+4,14),"CHOICE "+RIGHT$(

" "+MID$(STR$(I),2),2)

50 NEXT

60 RVS LN+4,13,11

70 ON KEY CH$; GOTO 90,100,110

80 GOTO 70

90 D=-1:GOTO120

100 D=1:GOTO120

110 PRINT@(17,8),"YOU SELECTED ITEM ";LN:END

120 RVS LN+4,13,11:LN=LN+D:IFLN<0THENLN=10

130 IF LN>10 THEN LN=0

140 RVS LN+4,13,11:GOTO70

150 PRINT@(23,2),"USE UP AND DOWN ARROWS TO

CHOOSE":RVS23,0,40

160 PRINT@(24,5),"AND PRESS RETURN TO

SELECT";:RVS24,0,40:RETURN

This example uses the RVS command to make a nice "scrolling

bar" menu.

See Also:

ERASE, MOVE, FILL and COPY.

38

SCRATCH

Token:

$E3 - 227

Type:

Statement.

Action:

The SCRATCH command is used to delete an entire array, and

return the memory back to the system. Think of the SCRATCH

command as kind of an UN-DIM. If the array is of type string,

then all strings are released from the string table.

Syntax:

SCRATCH(<array name>(0))

array name = string, float or integer array.

Example:

10 CLS:PRINT"FREE MEMORY-":PRINT

20 PRINT" BEFORE DIM:" 65535-FRE(0)

30 DIMA(200)

40 PRINT" AFTER DIM:"65535-FRE(0)

50 SCRATCH(A(0))

60 PRINT"AFTER SCRATCH:" 65535-FRE(0)

70 PRINT:PRINT "NOTE THAT ALL MEMORY HAS BEEN

RETURNED."

See Also:

DELETE, DUP, INSERT, SEARCH, SORT and SUM.

39

SCREEN

Token:

$DD - 221

Type:

Statement.

Action:

The SCREEN command is used to SAVE and LOAD text screens

to/from disk. Screens can also be saved and loaded from one of

four buffers under the KERNAL ROM. When using the buffers, two

operations can be performed. Exchange will swap the two screens.

Put will copy the source screen to the destination.

Syntax:

SCREEN(<operation>, <source>, <dest>)

operation = E for exchange, P for put.

source = 0-4 (display is 0, buffers are 1-4)

dest = 0-4 (display is 0, buffers are 1-4)

SCREEN(<operation>,<num>,<filename>)

operation = S for save to disk, L for load.

num = source number for save, destination for

load.

filename = any legal disk file name.

Note: num can be omitted from the disk load version. In

that case, the screen is put into the same buffer number from

which it was saved.

Example:

10 SCROFF:FORI=1TO4:CLS

20 PRINT@(I,8),"THIS IS SCREEN" I

25 PRINT:FORJ=1TO18:PRINTSTRING$(40,64+J);:NEXT

30 FILLI-1:SCREEN(P,0,I):NEXT:CLS:SCRON

40 FORI=1TO4:SCREEN(P,I,0):PAUSE60:NEXT

This example stashes away 4 screens, then displays.

40

SCROFF

Token:

$DB - 219

Type:

Statement.

Action:

The SCROFF command turns off the video display. This is

useful for drawing screens without the user being able to see

them being drawn. Care should be taken so that errors do not

happen during a SCROFF, if they do, the error message will not be

seen!. Press RUN-STOP/RESTORE to restore normal video if this

happens.

Syntax:

SCROFF

Example:

10 SCROFF

20 CLS

30 PRINTSTRING$(80,"*");

40 FORI=1TO14:PRINT"**"SPC(36)"**";:NEXT

50 PRINTSTRING$(80,"*");

60 PRINT@(8,6),"THIS WILL APPEAR INSTANTLY!"

70 SCRON:PAUSE120

See Also:

SCRON.

SCRON

Token:

$DA - 218

Type:

Statement.

Action:

The SCRON command turns on the screen after SCROFF had been

used to turn it off.

41

Syntax:

SCRON

Example:

10 SCROFF

20 CLS

30 PRINTSTRING$(80,"*");

40 FORI=1TO14:PRINT"**"SPC(36)"**";:NEXT

50 PRINTSTRING$(80,"*");

60 PRINT@(8,6),"THIS WILL APPEAR INSTANTLY!"

70 SCRON:PAUSE120

See Also:

SCROFF.

SEARCH

Token:

$F9 - 249

Type:

Function.

Action:

The SEARCH command is used to quickly search a string array

for a specified search key. The array can be searched in any one

of six different relational operations. If the key is found, then

SEARCH returns the element number of the match. If the key is not

found, then SEARCH returns -1.

Syntax:

SEARCH(<operator>, <array$(0)>, <key>)

operator: 1 = less than

2 = equal to

3 = less than or equal to

4 = greater than

5 = not equal to

6 = greater than or equal to

array = string array to be searched.

42

key = search key.

Example:

10 CLS:DIMA$(5):FORI=0TO5:READA$(I):NEXT

20 DATA ZEBRA,CAR,COMPUTER,RADIO,APPLE,TREE

30 FORI=0TO5:PRINTI,A$(I):NEXT

40 PRINT:PRINT

50 K$="TREE":GOSUB100

60 K$="CAR":GOSUB100

70 K$="AUTO":GOSUB100

80 END

100 S=SEARCH(2,A$(0),K$)

110 IFS>-1THENPRINTK$" WAS FOUND AT ELEMENT "S

120 IFS<0THENPRINTK$" WAS NOT FOUND"

130 RETURN

See Also:

INSERT, DELETE, DUP, SCRATCH, SORT and SUM.

SORT

Token:

$DF - 223

Type:

Statement.

Action:

The SORT command is used to sort a string array into

ascending or descending order. It uses the Shell Metzner sorting

algorithm. Note that element zero is not sorted.

Syntax:

SORT(<direction>, <array$(0)>)

direction = A for ascending.

D for descending

array = string array to sort.

Example:

10 CLS:DIMA$(6):FORI=1TO6:READA$(I):NEXT

20 DATA RADIO,ZEBRA,COMPUTER,CAR,APPLE,TREE

43

30 PRINT"UNSORTED","ASCENDING","DESCENDING":

PRINT

40 FORI=1TO6:PRINTA$(I):NEXT

50 SORT(A,A$(0)):PRINT@(2,0),"";

60 FORI=1TO6:PRINT ,A$(I):NEXT

70 SORT(D,A$(0)):PRINT@(2,0),"";

80 FORI=1TO6:PRINT ,,A$(I):NEXT

This simple program demonstrates the SORT function. A small

array is loaded with strings, it is then sorted in ascending and

descending order and displayed on the screen

See Also:

INSERT, DELETE, DUP, SCRATCH, SEARCH and SUM.

STRING$

Token:

$E9 - 233

Type:

Function.

Action:

The STRING$ function returns a string of n copies of the

specified character (up to 255).

Syntax:

STRING$(<num>,<string>)

num = number of copies

string = the character to copy

STRING$(<num>,<ASCII number>)

num = number of copies

ASCII number = ASCII value of desired

character.

Example:

10 CLS:A$=CHR$(45)

20 PRINT STRING$(40,"-")

44

30 PRINT STRING$(40,45)

40 PRINT STRING$(40,A$)

This program demonstrates the several ways of passing the

string parameter to the STRING$ command.

SUM

Token:

$FA - 250

Type:

Function.

Action:

The SUM function returns the sum of an entire numeric array.

The array must be floating point or integer.

Syntax:

SUM(<array>(0))

array = an integer or float array.

Example:

10 CLS:DIM A(10)

20 DATA 500,299.60,53.80,40,20,1000,

67.3,666.23,123.48,87,200

30 FORI=0TO10:READ A(I):NEXT

40 PRINT"THE SUM OF:"

50 FORI=0TO10:PRINTTAB(10)A(I):NEXT

60 PRINTTAB(10)"----------"

70 PRINT TAB(6)"IS: "SUM(A(0))

See Also:

INSERT, DELETE, DUP, SCRATCH, SEARCH and SORT.

45

VARPTR

Token:

$EA - 234

Type:

Function.

Action:

The VARPTR function returns the address of the specified

variable. Note that strings return a pointer to the string, and

its length. For more information on variables and how they are

stored in memory, see TOOL KIT BASIC, by Dan Heeb, published by

COMPUTE! BOOKS, or MASTERING THE COMMODORE 64 by Jones &

Carpenter, published by WILEY PRESS.

Syntax:

VARPTR(<variable>)

variable = any legal BASIC variable.

Example:

10 CLS

20 DIM A$,A,B,I

30 A$="HERE IS A STRING!"

40 A = VARPTR(A$)

50 B = DEEK(A+1)

60 FORI=1TOPEEK(A):PRINTCHR$(PEEK(B+I-1));:

NEXT

This example uses VARPTR to locate a string variable. The

string is then printed on the screen.

46

XOR

Token:

$EB - 235

Type:

Function.

Action:

The XOR function performs the bitwise exclusive-or

operation. Like AND or OR, XOR works on individual bits of a

byte. The following truth table explains:

First Bit Second Bit Result

0 0 0

0 1 1

1 0 1

1 1 1

The XOR function is useful for flipping between two

characters, or flag conditions.

Syntax:

XOR(<value>, <value>)

value = 0-32767

Example:

10 CLS:F1=0:F2=0:A$(0)="ON ":A$(1)="OFF"

20 PRINT"YOU TYPE, AND I'LL PRINT THE CHARACTERS"

30 PRINT"ON THE SCREEN. IF YOU PRESS THE * KEY"

40 PRINT"I WON'T SHOW ANY CHARACTERS UNTIL YOU"

50 PRINT"PRESS THE * KEY AGAIN."

60 GETA$:IFA$=""THEN60

70 IFF1=0THENCLS:PRINT@36,A$(F2):F1=1

80 IFA$<>"*"THEN100:ELSE F2=XOR(F2,1):

POKE783,1:SYS65520

90 PRINT@36,A$(F2):POKE783,0:SYS65520:GOTO60

100 IFF2=1THEN60:ELSE PRINTA$;:GOTO 60

See Also:

AND, OR and NOT in your BASIC manual.

47

APPENDIX A
--

MEMORY MAP

00000 - $0000 = Start of RAM

02049 - $0801 = Start of Runtime module

06400 - $1900 = Approximate new start of BASIC

65535 - $FFFF = Top of RAM

48

APPENDIX B
--

SCAN CODES

KEY CODE KEY CODE

--

INSERT/DELETE 0 9 32

RETURN 1 I 33

CURSOR RIGHT 2 J 34

F7 3 0 35

F1 4 M 36

F3 5 K 37

F5 6 O 38

CURSOR DOWN 7 N 39

3 8 + 40

W 9 P 41

A 10 L 42

4 11 - 43

Z 12 . 44

S 13 : 45

E 14 @ 46

(NOT USED) 15 , 47

5 16 BRITISH PND 48

R 17 * 49

D 18 ; 50

6 19 CLEAR/HOME 51

C 20 (NOT USED) 52

F 21 = 53

T 22 UP ARROW 54

X 23 / 55

7 24 1 56

Y 25 BACK ARROW 57

G 26 (NOT USED) 58

8 27 2 59

B 28 SPACE BAR 60

H 29 (NOT USED) 61

U 30 Q 62

V 31 RUN/STOP 63

NO KEY PRESSED 64

--

49

A D D E N D U M

R A S T E R S Y N C

BASIC 4 synchronizes certain commands with the raster line

on the screen. What this means is that FILL, RVS, COPY, MOVE,

SCREEN, etc. won't write to the screen while it's still being

updated. This makes screen manipulation look smoother at the

expense of printing to the screen seemingly slower.

If you're constantly using BASIC 4 commands that manipulate

the screen, you might notice the decrease in speed. It might

sound hard to believe but those waits of up to a max 30th of a

second can add up to to notable intervals when nested in busy

screen manipulation loops. If this isn't acceptable, you can

disable the wait. To disable the raster wait, put this command

at the top of your program:

POKE 823,0:REM DISABLE RASTER WAIT

Likewise you can enable the raster wait with the following:

POKE823,255:REM ENABLE RASTER WAIT

50

NEW BUT COMPATIBLE SYNTAX FOR INLINE$

Syntax:

INLINE$(<row>,<col>,<#bytes>,[<validation string])

The INLINE$ command now accepts upper/lowercase letters and

numbers as a default. You can also specify which characters are

acceptable through an OPTIONAL validation string which can be

specified in quotes or through a string variable. For instance:

INLINE$(20,14,10,"1234567890.-")

This will place a cursor at row 20, column 14 and allow only

10 characters to be entered. These ten characters are specified

in the validation string, "1234567890.-". Only these characters

will be accepted.

A null or absent validation string paramter will allow all

the default characters to be entered.

The maximum number of characters allowed is 81.

If you'd like a different type cursor to flash while INLINE$

is in use, POKE the ASCII value of the character you'd like to

flash in location 822.

The maximum length of a validation string is 127.

51

D I S A B L I N G B A S I C 4

You can disable BASIC with a simple SYS 58451.

This will make everything normal except the start of BASIC.

Every command used after this MUST be BASIC V2.

Note: THAT THE START OF BASIC MUST BE MANUALLY MOVED BACK TO

$0801.

SYS2214 will do a warm start which will reset the

computer without killing fastloads. BASIC pointers will be

normal but your program can't continue after this point since it

will be NEWed. You are left in the immediate mode.

